Number Systems

Arithmetic Operations with Fractional Numbers

CS-173 Fundamentals of Digital Systems

Mirjana Stojilovic

FUNDAMENTALH o Spring 2025

D IGITAL

SYSTEMS

https://mirjanastojilovic.github.io/cs173/index.html

O— OO0

2000 —0O o

000000000000

- O—0 00 —00 r—r

Or—

" OO0 0O r—rr—r o o

— OO

- —0O0—=00

>

— OO0 00— OO0 —r

OO r—r—r—rm—rm—0O

11111111111
dr—r—r—r——0 UO J L
OO0 ™
P — OO0 e—r—1r—r—1r— O—0OC0CO—O0O00r—r—r—0O0™
O— 0000 ™
OO0 0O r—r—0O0O™
- OO QOO0 0O r—r—r—r—1r— o

OO0 r—r— 0O 0 v

O—CO 00— r—r—0O 0

Previously on FDS

..Fixed- and Floating-Point Representations

CS-173, © EPFL, Spring 2025

Previously

= Discovered the notion of radix point;

= |_earned two representations 1
for fractional numbers
 Fixed-point
 Floating-point
» |EEE 754 standard
= Evaluated and analyzed precision,
resolution, range, accuracy,
dynamic range, rounding

CS-173, © EPFL, Spring 2025

_,OOO .

[I QU G G G W o, PR W oy

=2 00=—==2=20C

- O

— Y

R Y o T P g

O = =) el

_m=OO=000= 0= -

O=0-

= 0O

[P W W R G WY o, P W oy

=)= OO —C

- OO0 =200

—O=00:

Fixed- and Floating-Point Representations

= Fixed-point » Floating-point
X =(Xmo1Xpm—2.. X1 X0 X1 X 2. X_y) X=(SEn 1FEn_s...E1EqMy,_1 M, _5...My)
Integer Radix Fractional gigh Exponent Maghitude
componhent point component
= Value (two’s complement) = \Value (sign-and-magnitude mantissa)
= — X1 2"+ 3T X2 r=(—1)° x M x b¥

I
1

[T

ol
Ll ——

CS-173,© EPFL, Spring 2025 - CONStant, “fixed” bihary point Variable, “floating” binhary point

CS-173, © EPFL, Spring 2025

Let's Talk About...

..Performing arithmetic operations f
with fractional numbers ?

CS-173, © EPFL, Spring 2025

Learning Outcomes

= Perform +/-/x pen-and-paper style
 Fixed-point
 Floating-point

Quick Outline

= Fixed-point arithmetic

= Floating-point arithmetic

=

CS-173, © EPFL, Spring 2025 .
© alekseyliss / Adobe Stock

Fixed-Point Arithmetic

CS-173, © EPFL, Spring 2025

o

© alekseyliss / Adobe Stock

Fixed-Point Arithmetic

Addition/Subtraction

= Performing + or - on two binary
numbers z(m, f) and y(m, f)
IS done in the same way as
if the operands were integers
» Overflow can happen

T+ Y= Tint + Tr + Yint + Ytr
T — Y = Ting + Ttr — (Yint + Yer)

CS-173, © EPFL, Spring 2025

(7]
i
—
o
=
<
x
1]

Fixed-Point Arithmetic

Example: Addition/Subtraction

= Addition
011011 100 «— Carry
X 000101.110 = 5.75
+ Vv + 001100.011 = 12.375

X+Y 010010.001 = 18.125

CS-173, © EPFL, Spring 2025

= Subtraction

1110000 110 «<— RBorrow

000101.110 = 5.75
001100.011 = 12.375

111001.011 = —6.625

11

Fixed-Point Arithmetic

Addition/Subtraction in Two's Complement

= How many bits to represent the integer and fractional parts?

My —2 My —2
xty= (X(mml)Q(mfcl) + Z Xi2i) + (}/(myl)Q(myl) + Z 1/7;27;)

The largest integer-part exponent: max(mg; — 1, m, — 1) /

Consequently: My4, = max(my, my,) + 1

T The smallest fractional-part exponent: min(— fz, — fy)
. Consequently: fz4+, = max(fz, f

Number of bits for Yo oty (fe: f)

the integer Component 1

Number Of bits for

the fraCtiohal cCompohent
CS-173, © EPFL, Spring 2025

12

(7]
i
—
o
=
<
x
1]

Fixed-Point Addition

Example: Analogy With Decimal Numbers

= How many bits to represent the integer and fractional parts?

0.99 my=1,f =2
+ 999.9999 m, =3, f, =4

1009.9899

Mgty = Max(mg, my) + 1 foty = max(fq, fy)

Mgty = max(1,3)+1=4 foty = max(2,4) =4

CS-173, © EPFL, Spring 2025

13

Fixed-Point Arithmetic

Multiplication, Same Operand Format

= Multiplication on two binary numbers x(m, f) and y(m, f)
« Same algorithm as if the operands were integers
* Binary point location changes; overflow can happen
* How many bits to represent the integer and fractional parts?

= [n two’'s complement:

The largest integer-part exponent: (m — 1) + (m —1) _—

Consequently: Mgy = 2m The smallest fractional-part exponent: (—f) + (—=f)

Consequently: fz, = 2f 14

CS-173, © EPFL, Spring 2025

Fixed-Point Arithmetic

Multiplication, Generalization

= Multiplication on two binary numbers z(m., f) and y(m,, f,)
« How many bits to represent the integer and fractional parts?

-y = (Tint + Tx) * (Yint + Yir)

= [n two's complement:

The largest integer-part exponent: (mg — 1) + (m, —1) _—

Consequently: Mgy = My + 1My The smallest fractional-part exponent: (—fz) + (—fy)

Consequently: fzy = fz + [y

(7]
i
—
o
=
<
x
1]

Fixed-Point Multiplication

Example: Analogy With Decimal Numbers

= How many bits to represent the integer and fractional parts?

0.99 mu=1,f, =2
¥ 999.9999 m, =3, f, =4

9989.999001

CS-173, © EPFL, Spring 2025

16

(7]
i
—
o
=
<
x
1]

Fixed-Point Arithmetic

Example: Multiplication

010.11
= Format % 011.01
My = My = 3 000000
Jo = [y =2 S+ 001011
= Example S 0001011
T+
. - : 000000
~ 00001011
Y 3.25 3
X X §°+ 001011
XxY 8.9375 000110111
+ 001011
0010001111
+ 000000
0010001111

CS-173, © EPFL, Spring 2025

Multiplicand
Multiplier

First partial product (always zero), sign-extended
1 x multiplicand, sign-extended

Intermediate result, sign-extended
0 x multiplicand, left-shifted by 1 place and sign-extended

Intermediate result, sign-extended

1 x multiplicand, left-shifted by 2 places and sign-extended

Intermediate result, sign-extended
1 x multiplicand, left-shifted by 3 places and sign-extended

Intermediate result, sign-extended

0 x multiplicand, left-shifted by 4 places and sign-extended

TResult, integer - convert to fixed-point how
17

Example Contd.

= [nteger result 0010001111 needs now to be converted to
fixed-point representation

« ASsuming we can use as many bits as required to represent the integer
and fractional parts

EXAMPLES

Myy = Mg + My = 6

« Assuming the same format for multiplicand, multiplier, and the result

Mgy = My = My = 3

fow = fo=f, =2 064000.1 14 = 0.75
£ 8.9375

Ih practice, the format is fixed,
CS-173, © EPFL, Spring 2025 and erroneous results may happen

Pros and Cons of Fixed-Point Representation

& Arithmetic operations on integers can be applied to
fixed-point numbers without modifications
i& Portable: we can reuse the same integer processing digital hardware
i | ike with integers, arithmetic operations are performed efficiently (fast)
& Used in image and signal processing and communication

Complex data and algorithm analysis
Where to put the binary point to achieve good accuracy?

There are other number formats (floating-point) that provide
more extensive dynamic range

CS-173, © EPFL, Spring 2025

20

Floating-Point Arithmetic

CS-173, © EPFL, Spring 2025

o

© alekseyliss / Adobe Stock

Floating-Point Arithmetic

Addition/Subtraction

= et x and y be represented as (S, M., E;) and (Sy, My, Ey)
» The signed significands M* = (—1)°M are normalized

= Addition/subtraction result is 2, also represented as (S,, M., E.)
z=xty=M;x2P £ M x 2P

 The significand of the result is also normalized

z= M} x 2F-

Floating-Point Addition/Subtraction

Algorithm

= Four main steps to compute and produce the result of +/-

« Add/subtract significand (mantissa) and set the exponent

The mantissa of the number with the smaller exponent has to be multiplied by
two to the power of the difference between the exponents (this operation is called alignment)
and then added/subtracted to the mantissa of the other number

A Mt (M} x 2WFE—E)) if B, > E,
: (M x 2WE==E)) + M> if E, < B,
E, = max(E,, Ey)

* Normalize the result and then, if required, adjust the exponent
* Round the result and then, if required, normalize it and adjust the exponent
4 « Setflags for special values, if required

Floating-Point +/-

Step 1: Align and +/-

CS-173, © EPFL, Spring 2025

=

© alekseyliss / Adobe Stock

Alignment

Example: Analogy with Decimal Numbers

Normalized, 3-bit fraction
= Example 1 |

1.895 x 10° + 5.440 x 10° = (194940)0

« Approach 1: Align the two operands to a common exponent, e.g., zero

EXAMPLES

Shifted left (<< 3)
Shifted left (<< 5) Not normalized

| /

1.895 x 10° + 5.440 x 10% = (189500.000 + 5440.000) x 10° = 194940.000 x 10°
« Cons: as the exponents of the operands are different from zero,
both significands need adjusting/shifting (unnecessary additional work)
* The result needs to be normalized, and the exponent adjusted

CS-173, © EPFL, Spring 2025 25

Alignment

Analogy with Decimal Numbers, Contd.

= Example
« Approach 2: align to the common exponent—min of the two
After |eft shift (<< |5-3]) Not hormalized

; /

1.895 x 10° 4 5.440 x 10° = (189.500 + 5.440) x 10° = 194.940 x 10°

(7]
i
—
o
=
<
x
1]

 Pros: Only one alignment (one adjustment of the significand)
» The result needs to be normalized, and the exponent adjusted

* |eft shift: some of the most significant bits of one of the two S|gn|f|cands
are lost in the process; potentially a large error s

1.895 x 10° + 5.440 x 10° = (#89.500 + 5.440) x 10° L/ R ,\

CS-173, © EPFL, Spring 2025 (14940) 10 7,5 (]_94940) 10 é\ 2

26

Alignment

Analogy with Decimal Numbers, Contd.

= Example
« Approach 3: align to the common exponent—max of the two
After right shift (>> |5-3]) Normalized
| /

1.895 x 10° 4 5.440 x 10° = (1.895 + 0.0544) x 10° = 1.9494 x 10°

 Pros: only one alignment (one adjustment of the significand)
» The result needs to be normalized, and the exponent adjusted

 Right shift: Some least-significant bits of one of
the two significands may get lost in the process,
but the potential error is much smaller

1.895 x 10° + 5.440 x 10% = (1.895 + 0.05449 x 10°
CS-173, ® EPFL, Spring 2025 — (194900)10 I~ (194940)10

%)
i
—
o
=
<
x
1]

Floating-Point Addition/Subtraction

Step 1: Recap

= Recall Step 1: Add/subtract significand and set exponent

= Algorithm:
» Subtract exponents d = |E, — E,|
« Align significands (mantissas)
« Compare the exponents of the two operands

« Shift right d positions the significand Fp Signs of Effective
of the operand with the smaller exponent operation the operands operation
« Select as the exponent of the result + = add
the larger exponent + » subtract
« Add/subtract signed significands . = subtract

and produce the sign of the result - ” add

Floating-Point +/-

Step 2: Normalization

CS-173, © EPFL, Spring 2025

=

© alekseyliss / Adobe Stock

(7]
w
—
o
=
<
>
]

Floating-Point Addition/Subtraction

Normalization

= \arious situations may occur
e Scenario 1:
» Theresultis already normalized. No action is needed.
« Example:

1.10011111
+ 0.00101011

1.11001010 Normalized

CS-173, © EPFL, Spring 2025

30

(7]
w
—
o
=
<
>
]

Floating-Point Addition/Subtraction

Normalization, Contd.

= \arious situations may occur
« Scenario 2: When adding, the significand might overflow

» Steps to perform normalization:
« Shift right the result by one position
 Increment the exponent by one

« Example:

1.1001111 Normalization
+ 0.0110110 (2) shift right

>>1
10.0000101 " —— 2) InCretment — 1.00000101

the expohent
E=E+1

CS-173, © EPFL, Spring 2025

31

(7]
w
—
o
=
<
>
]

Floating-Point Addition/Subtraction

Normalization, Contd.

= \arious situations may occur
« Scenario 3: When subtracting, the result might have leading zeros

» Steps to perform normalization:
« Shift left the result by as many positions as there are leading zeros
» Decrement the exponent by the number of leading zeros

« Example:
Normalization
1.1001111 (1) count |eading zeros
_1.1001010 et
0.0000101 —— @ Sf("f;'eﬁ —— 1.0100000

(2) DeCrement
the exponent

E=E-p

CS-173, © EPFL, Spring 2025

32

Floating-Point +/-

Step 3: Rounding

CS-173, © EPFL, Spring 2025

=

© alekseyliss / Adobe Stock

Floating-Point Addition/Subtraction

Rounding

Ihtermediate result

I
I
I
—H——— —— —Y | : —>
1 / \ 2
FP result
(Ohe Of these two)

-

Dol ——
ot
) (g

= The result may not be representable in the given number format

= Perform rounding
« Towards zero: truncate the least-significant bits
« Towards *oc : requires addition
« [default] To nearest, to even when tie: requires addition

CS-173, © EPFL, Spring 2025

34

Rounding to Nearest

To Even if Tie

= The FP result is as close as possible to the exact value
« Minimized roundoff error (default rounding mode in IEEE 754)

* Tie to even is preferred because it leads to smaller errors when
the result is divided by two—a frequent operation

= Assuming a significand of infinite precision and radix r,
round to the nearest can be obtained by adding(r~7)/2 to
the infinite precision significand and keeping the resulting
f fractional digits

* If overflow: normalization and the exponent adjustments are needed

EXAMPLES

Rounding to Nearest

To Even if Tie

= Round the given value to the nearest 8-bit fraction:

1.100100011101 Exactvalue, bUt\“{)Ot representable

A

+ 1 Addition with (27%)/2 =277
1.10010010 TResult, after rounding
Keep
8 bits

1.100100001101 Exact value, but not representable

+ 1 Addition with (27%)/2 =277
1.10010001 TResult, after rounding
Keep
8 bits

CS-173, © EPFL, Spring 2025

36

Rounding to Nearest

To Even if Tie

» Q: Round the value 1.100100001 to the nearest 8-bit fraction

= A: 1.10010000
« Looking at1.100100001, notice
« It'satie
* |f we ignore the tie bits, what is left is an even number

* |f we were to add anything, we'd end up rounding to the nearest odd
number
« Therefore, in this example, it suffices to truncate the "tie" bits

CS-173, © EPFL, Spring 2025

37

Max Round-off Error

» Q: Rounding to nearest, f fractional digits.
What is the maximum difference
between the exact value and its
FP representation?

EXact value
1
1
- I:::}r:.} | I , ¥ , : >
0 5 3 3 1 / \ 2
FP result
(Ohe Of these two)
A
- When the exact value is in the middle 92—/ B
and the exponent is the max — X 9Qmax

CS-173, © EPFL, Spring 2025 2

Max Round-off Error

Example Floating-Point

= Rounding to nearest, ffractional digits. Find the worst-case round-off error
= A: Max round-off error occurs for the largest positive exponent

% ExXponent inCreqsSes ==mmmmmmmeea- >
o
= <« | I : | : —>
x % for the worst-Case, {|] 11 1 1 9
i 8 4 2 &
when the real value is Worst-Case round- —eeeemcmeaea- >

in the middle between two \

consecutive FP humbers OfFf error inCreases

—

maX(Errorround-off) — 5 (xmax — L(imediately preceeding the max))
1

1

max(Erroroundoff) = = (1.11...11 x 2Fmer — 1.11...10 x 2Fmes) = 5Q—f x 2Fmaz

! Computing with large FP numbers may lead to (very) unexpected results

CS-173, © EPFL, Spring 2025 39

CS-173, © EPFL, Spring 2025

40

Literature

FUNDAMENTALS OF

DIGITAL LOGIC

with Verilog Design

= Chapter 3: Number Representation and
Arithmetic Circuits
= 3.7
= 372

= On the web: Wiki, IEEE 754 [link]

CS-173, © EPFL, Spring 2025

Digital Arithmetic

e R
P N B %)

! A '.‘!""‘ ':J‘ W .

. B € v, ¥ K

= Chapter 1: Preview of Basic Number
Representations and Arithmetic Algorithms
= 125
= Chapter 8: Floating-Point Representation,
Algorithms, and Implementations
= 81-83
= 847
= 857

41

https://en.wikipedia.org/wiki/IEEE_754

