

Number Systems

Arithmetic Operations with Fractional Numbers

CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

Spring 2025

Previously on FDS

...Fixed- and Floating-Point Representations

Previously

- Discovered the notion of radix point
- Learned two representations for fractional numbers
 - Fixed-point
 - Floating-point
 - IEEE 754 standard
- Evaluated and analyzed precision, resolution, range, accuracy, dynamic range, rounding

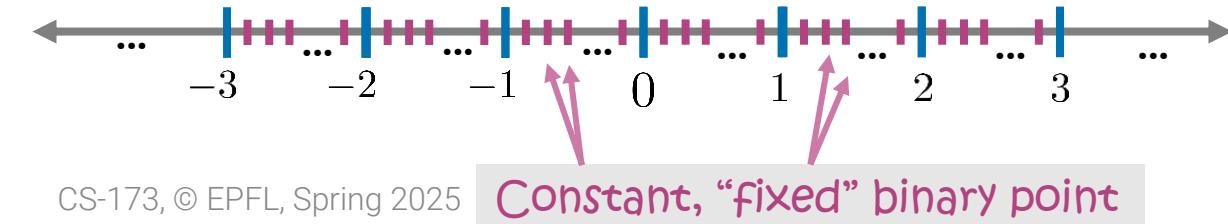
Fixed- and Floating-Point Representations

- Fixed-point

$$X = (X_{m-1}X_{m-2}\dots X_1X_0.X_{-1}X_{-2}\dots X_{-f})$$

- Value (two's complement)

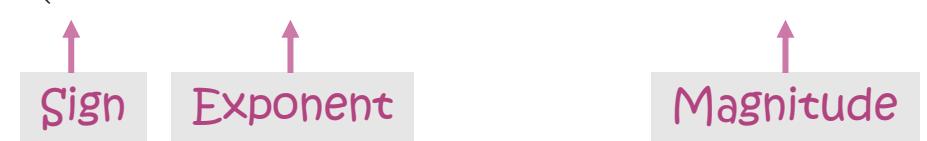
$$x = -X_{m-1}2^{m-1} + \sum_{i=-f}^{m-2} X_i 2^i$$



Constant, “fixed” binary point

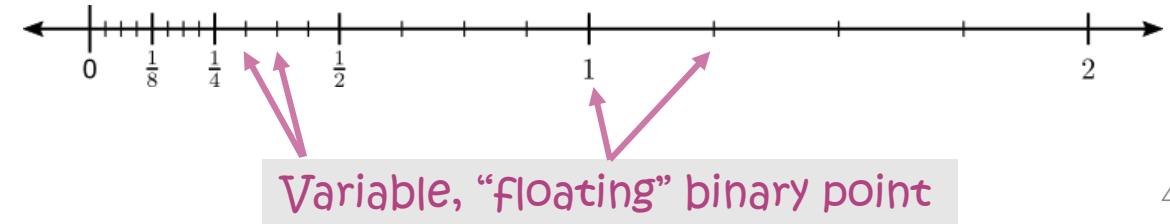
- Floating-point

$$X = (SE_{m-1}E_{m-2}\dots E_1E_0M_{n-1}M_{n-2}\dots M_0)$$

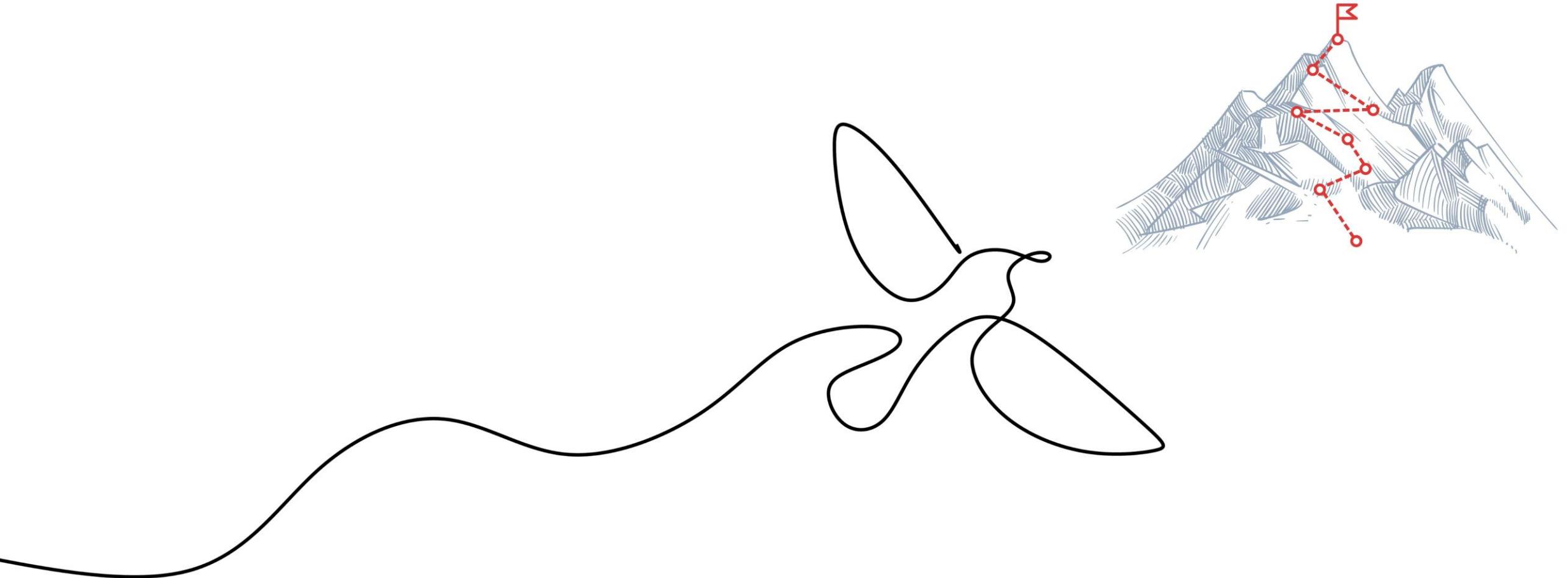


- Value (sign-and-magnitude mantissa)

$$x = (-1)^S \times M \times b^E$$



Variable, “floating” binary point

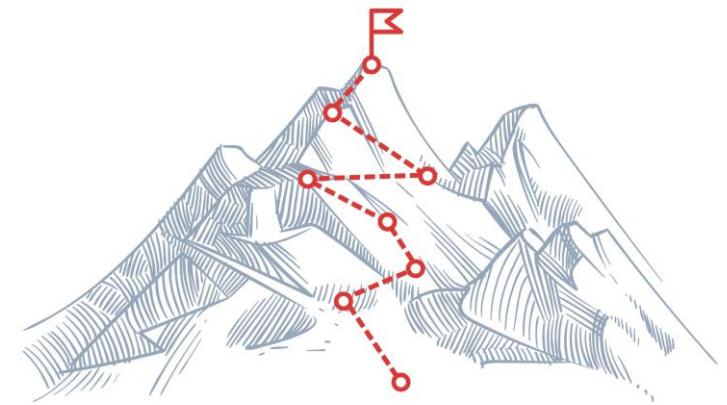


Let's Talk About...

...Performing arithmetic operations
with fractional numbers

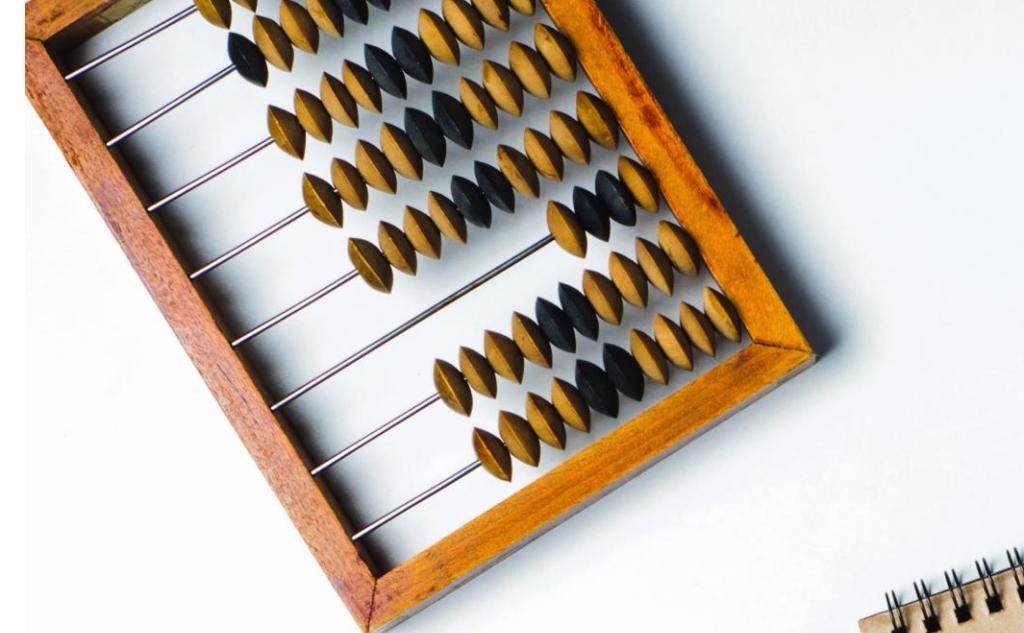
Learning Outcomes

- Perform $+/-/ \times$ pen-and-paper style
 - Fixed-point
 - Floating-point



Quick Outline

- Fixed-point arithmetic
- Floating-point arithmetic



Fixed-Point Arithmetic

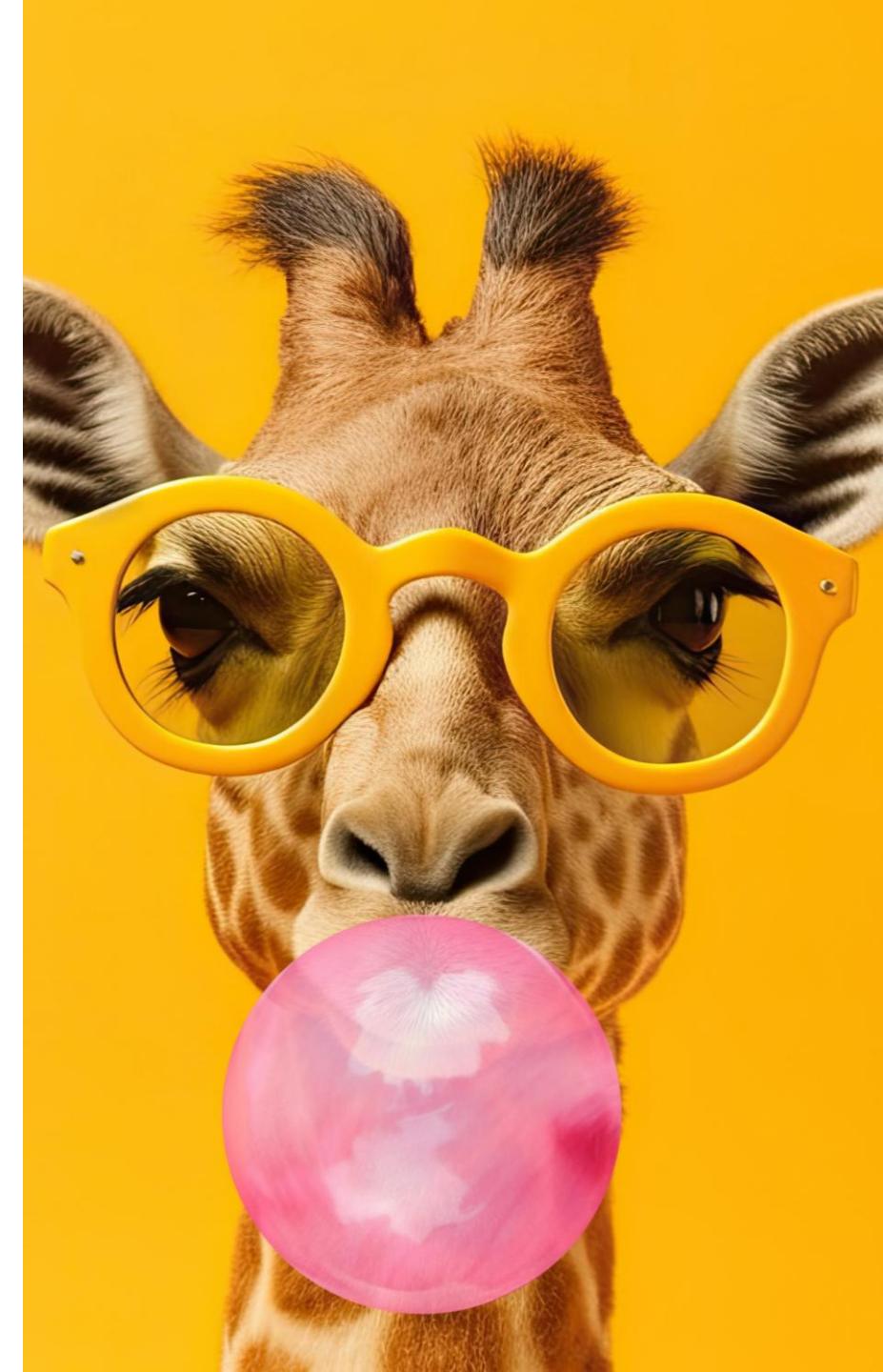
Fixed-Point Arithmetic

Addition/Subtraction

- Performing **+** or **-** on two binary numbers $x(m, f)$ and $y(m, f)$ is done in **the same way** as if the operands were integers
 - Overflow can happen

$$x + y = x_{\text{int}} + x_{\text{fr}} + y_{\text{int}} + y_{\text{fr}}$$

$$x - y = x_{\text{int}} + x_{\text{fr}} - (y_{\text{int}} + y_{\text{fr}})$$



Fixed-Point Arithmetic

Example: Addition/Subtraction

■ Addition

$$\begin{array}{r} X \\ + Y \\ \hline X + Y \end{array} \quad \begin{array}{r} 011011\ 100 \leftarrow \text{Carry} \\ 000101.110 = 5.75 \\ + 001100.011 = 12.375 \\ \hline 010010.001 = 18.125 \end{array}$$

■ Subtraction

$$\begin{array}{r} X \\ - Y \\ \hline X - Y \end{array} \quad \begin{array}{r} 1110000\ 110 \leftarrow \text{Borrow} \\ 000101.110 = 5.75 \\ - 001100.011 = 12.375 \\ \hline 111001.011 = -6.625 \end{array}$$

Fixed-Point Arithmetic

Addition/Subtraction in Two's Complement

- How many bits to represent the integer and fractional parts?

$$x \pm y = \left(-X_{(m_x-1)} 2^{(m_x-1)} + \sum_{i=-f_x}^{m_x-2} X_i 2^i \right) \pm \left(-Y_{(m_y-1)} 2^{(m_y-1)} + \sum_{i=-f_y}^{m_y-2} Y_i 2^i \right)$$

The largest integer-part exponent: $\max(m_x - 1, m_y - 1)$
Consequently: $m_{x \pm y} = \max(m_x, m_y) + 1$

Number of bits for
the integer component

The smallest fractional-part exponent: $\min(-f_x, -f_y)$
Consequently: $f_{x \pm y} = \max(f_x, f_y)$

Number of bits for
the fractional component

Fixed-Point Addition

Example: Analogy With Decimal Numbers

- How many bits to represent the integer and fractional parts?

$$\begin{array}{r} 9.99 \quad m_x = 1, f_x = 2 \\ + 999.9999 \quad m_y = 3, f_x = 4 \\ \hline 1009.9899 \end{array}$$

$$m_{x \pm y} = \max(m_x, m_y) + 1$$

$$m_{x+y} = \max(1, 3) + 1 = 4$$

$$f_{x \pm y} = \max(f_x, f_y)$$

$$f_{x+y} = \max(2, 4) = 4$$

Fixed-Point Arithmetic

Multiplication, Same Operand Format

- Multiplication on two binary numbers $x(m, f)$ and $y(m, f)$
 - Same algorithm as if the operands were integers
 - **Binary point location changes;** overflow can happen
 - How many bits to represent the integer and fractional parts?
- In two's complement:

$$x \cdot y = \left(-X_{m-1}2^{m-1} + \sum_{i=-f}^{m-2} X_i 2^i \right) \cdot \left(-Y_{m-1}2^{m-1} + \sum_{i=-f}^{m-2} Y_i 2^i \right)$$

The largest integer-part exponent: $(m - 1) + (m - 1)$
Consequently: $m_{xy} = 2m$

The smallest fractional-part exponent: $(-f) + (-f)$
Consequently: $f_{xy} = 2f$

Fixed-Point Arithmetic

Multiplication, Generalization

- Multiplication on two binary numbers $x(m_x, f_x)$ and $y(m_y, f_y)$
 - How many bits to represent the integer and fractional parts?

$$x \cdot y = (x_{\text{int}} + x_{\text{fr}}) \cdot (y_{\text{int}} + y_{\text{fr}})$$

- In two's complement:

$$x \cdot y = \left(-X_{m_x-1} 2^{m_x-1} + \sum_{i=-f_x}^{m_x-2} X_i 2^i \right) \cdot \left(-Y_{m_y-1} 2^{m_y-1} + \sum_{i=-f_y}^{m_y-2} Y_i 2^i \right)$$

The largest integer-part exponent: $(m_x - 1) + (m_y - 1)$
Consequently: $m_{xy} = m_x + m_y$

The smallest fractional-part exponent: $(-f_x) + (-f_y)$
Consequently: $f_{xy} = f_x + f_y$

Fixed-Point Multiplication

Example: Analogy With Decimal Numbers

- How many bits to represent the integer and fractional parts?

$$\begin{array}{r} 9.99 \quad m_x = 1, f_x = 2 \\ \times \quad 999.9999 \quad m_y = 3, f_y = 4 \\ \hline 9989.999001 \end{array}$$

$$m_{xy} = m_x + m_y$$

$$m_{xy} = 1 + 3 = 4$$

$$f_{xy} = f_x + f_y$$

$$f_{xy} = 2 + 4 = 6$$

Fixed-Point Arithmetic

Example: Multiplication

Format

$$m_x = m_y = 3$$

$$f_x = f_y = 2$$

Example

$$\begin{array}{r}
 X \qquad \qquad \qquad 2.75 \\
 \times \qquad \qquad \qquad \times \qquad \qquad \qquad 3.25 \\
 \hline
 X \times Y \qquad \qquad \qquad 8.9375
 \end{array}$$

	010.11	Multiplicand
×	011.01	Multiplier
	<hr/>	
	000000	First partial product (always zero), sign-extended
	<hr/>	1 x multiplicand, sign-extended
	001011	
	<hr/>	Intermediate result, sign-extended
	0001011	0 x multiplicand, left-shifted by 1 place and sign-extended
	<hr/>	
	000000	
	<hr/>	Intermediate result, sign-extended
	00001011	1 x multiplicand, left-shifted by 2 places and sign-extended
	<hr/>	
	001011	Intermediate result, sign-extended
	<hr/>	1 x multiplicand, left-shifted by 3 places and sign-extended
	000110111	
	<hr/>	
	001011	Intermediate result, sign-extended
	<hr/>	0 x multiplicand, left-shifted by 4 places and sign-extended
	0010001111	
	<hr/>	
	000000	
	<hr/>	
	0010001111	Result, integer \rightarrow convert to fixed-point now

Example Contd.

- Integer result 0010001111 needs now to be converted to fixed-point representation
 - Assuming we can use as many bits as required to represent the integer and fractional parts

$$m_{xy} = m_x + m_y = 6$$
$$f_{xy} = f_x + f_y = 4$$
 001000.1111 = 8.9375

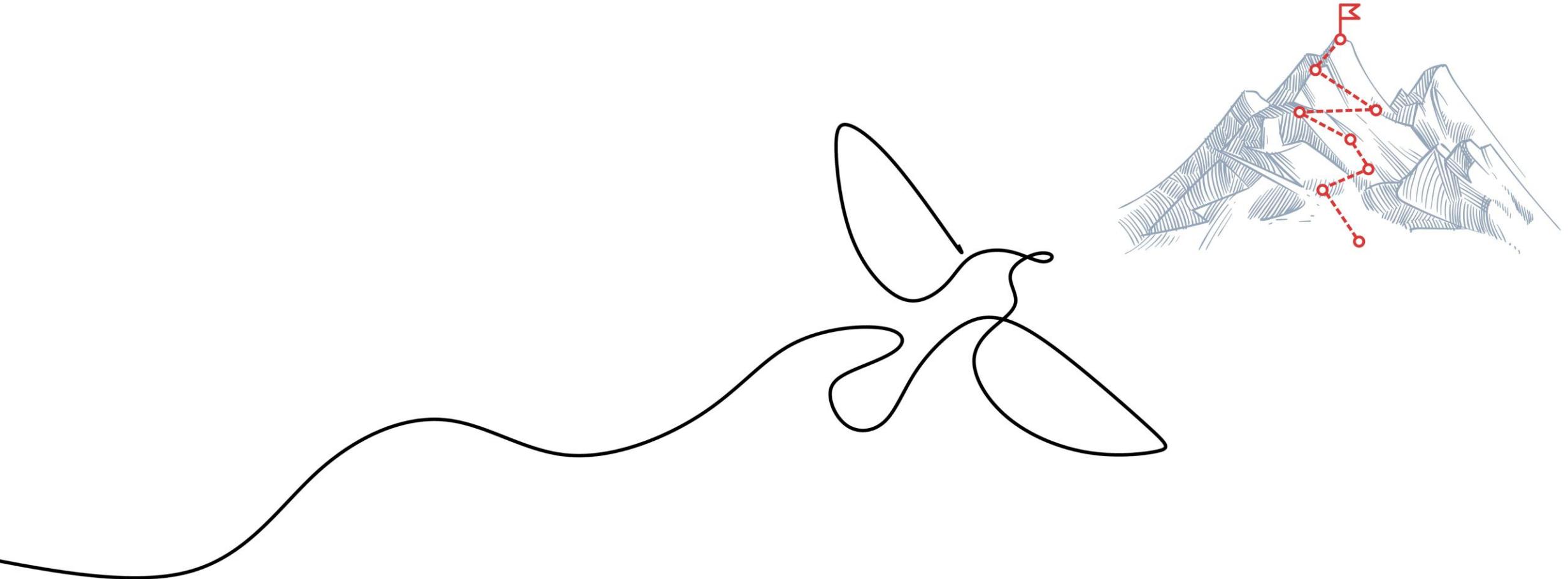
- Assuming the **same** format for multiplicand, multiplier, and the result

$$m_{xy} = m_x = m_y = 3$$
$$f_{xy} = f_x = f_y = 2$$
 ~~001000.1111~~ = 0.75
≠ 8.9375

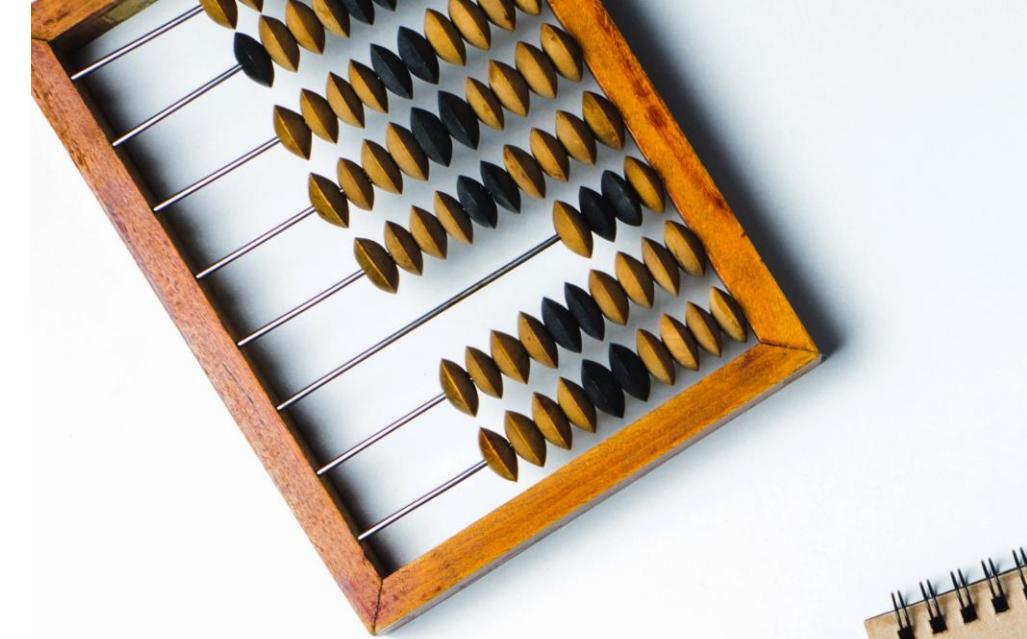
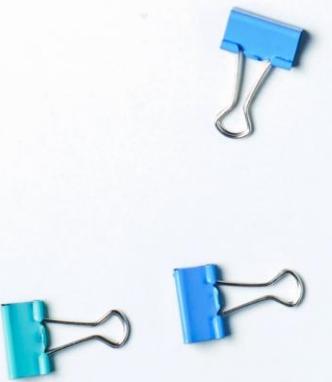
In practice, the format is fixed, and erroneous results may happen

Pros and Cons of Fixed-Point Representation

- 👍 Arithmetic operations on integers can be applied to fixed-point numbers without modifications
 - 👍 Portable: we can reuse the same integer processing digital hardware
 - 👍 Like with integers, arithmetic operations are performed efficiently (fast)
 - 👍 Used in image and signal processing and communication
- 👎 Complex data and algorithm analysis
 - 👎 Where to put the binary point to achieve good accuracy?
- 👎 There are other number formats (floating-point) that provide more extensive dynamic range



Floating-Point Arithmetic



Floating-Point Arithmetic

Addition/Subtraction

- Let x and y be represented as (S_x, M_x, E_x) and (S_y, M_y, E_y)
 - The signed significands $M^* = (-1)^S M$ are normalized
- Addition/subtraction result is z , also represented as (S_z, M_z, E_z)

$$z = x \pm y = M_x^* \times 2^{E_x} \pm M_y^* \times 2^{E_y}$$

- The significand of the result is also normalized

$$z = M_z^* \times 2^{E_z}$$

Floating-Point Addition/Subtraction

Algorithm

- Four main steps to compute and produce the result of +/-

- Add/subtract significand (mantissa) and set the exponent

1 The mantissa of the number with the **smaller** exponent has to be multiplied by two to the power of the difference between the exponents (this operation is called **alignment**) and then added/subtracted to the mantissa of the other number

$$M_z^* = \begin{cases} M_x^* \pm (M_y^* \times 2^{(E_y - E_x)}) & \text{if } E_x \geq E_y \\ (M_x^* \times 2^{(E_x - E_y)}) \pm M_y^* & \text{if } E_x < E_y \end{cases}$$

$$E_z = \max(E_x, E_y)$$

- 2 • **Normalize** the result and then, if required, **adjust the exponent**
- 3 • **Round** the result and then, if required, **normalize** it and **adjust the exponent**
- 4 • Set flags for **special values**, if required

Floating-Point +/-

Step 1: Align and +/-

Alignment

Example: Analogy with Decimal Numbers

- Example

Normalized, 3-bit fraction

$$1.895 \times 10^5 + 5.440 \times 10^3 = (194940)_{10}$$

- Approach 1: Align the two operands to a common exponent, e.g., zero

Shifted left ($\ll 3$)

Shifted left ($\ll 5$)

Not normalized

$$1.895 \times 10^5 + 5.440 \times 10^3 = (189500.000 + 5440.000) \times 10^0 = 194940.000 \times 10^0$$

- Cons: as the exponents of the operands are different from zero, both significands need adjusting/shifting (unnecessary additional work)
- The result needs to be normalized, and the exponent adjusted

Alignment

Analogy with Decimal Numbers, Contd.

■ Example

- Approach 2: align to the **common exponent—min of the two**

$$1.895 \times 10^5 + 5.440 \times 10^3 = (189.500 + 5.440) \times 10^3 = 194.940 \times 10^3$$

After left shift (<< |5-3|) Not normalized

- Pros: Only one alignment (one adjustment of the significand)
- The result needs to be normalized, and the exponent adjusted
- Left shift: some of the most significant bits of one of the two significands are lost in the process; **potentially a large error**

$$\begin{aligned} 1.895 \times 10^5 + 5.440 \times 10^3 &= (189.500 + 5.440) \times 10^3 \\ &= (14940)_{10} \neq (194940)_{10} \end{aligned}$$

Alignment

Analogy with Decimal Numbers, Contd.

- Example

- Approach 3: align to the **common exponent—max of the two**

$$1.895 \times 10^5 + 5.440 \times 10^3 = (1.895 + 0.0544) \times 10^5 = 1.9494 \times 10^5$$

After right shift (>> |5-3|)
 \downarrow
Normalized
 \downarrow

- Pros: only one alignment (one adjustment of the significand)
- The result needs to be normalized, and the exponent adjusted
- Right shift: Some least-significant bits of one of the two significands may get lost in the process, but the potential **error is much smaller**

$$\begin{aligned}
 1.895 \times 10^5 + 5.440 \times 10^3 &= (1.895 + 0.054\textcolor{red}{4}) \times 10^5 \\
 &= (194900)_10 \approx (194940)_10
 \end{aligned}$$

Floating-Point Addition/Subtraction

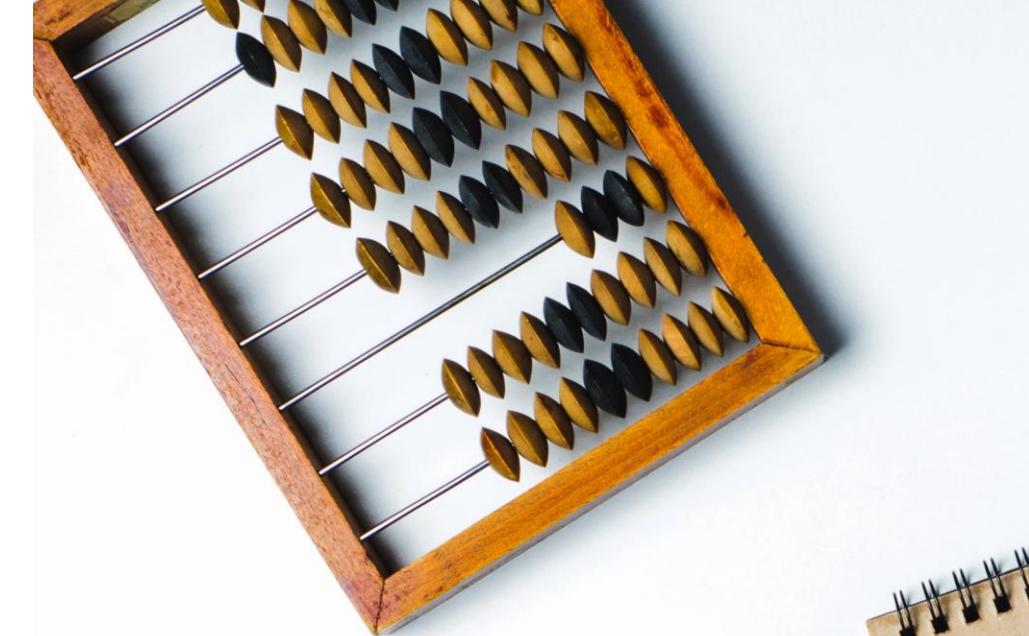
Step 1: Recap

- Recall Step 1: Add/subtract significand and set exponent
- Algorithm:
 - Subtract exponents $d = |E_x - E_y|$
 - Align significands (mantissas)
 - Compare the exponents of the two operands
 - Shift right d positions the significand of the operand with the smaller exponent
 - Select as the exponent of the result the larger exponent
 - Add/subtract signed significands and produce the sign of the result

FP operation	Signs of the operands	Effective operation
+	=	add
+	≠	subtract
-	=	subtract
-	≠	add

Floating-Point +/-

Step 2: Normalization



Floating-Point Addition/Subtraction

Normalization

- Various situations may occur
 - Scenario 1:
 - The result is already normalized. No action is needed.
 - Example:

$$\begin{array}{r} 1.10011111 \\ + 0.00101011 \\ \hline 1.11001010 \end{array} \quad \text{Normalized}$$

Floating-Point Addition/Subtraction

Normalization, Contd.

- Various situations may occur
 - Scenario 2: When **adding**, the significand might **overflow**
 - Steps to perform normalization:
 - Shift right the result by one position
 - Increment the exponent by one
 - Example:

$$\begin{array}{r} 1.1001111 \\ + 0.0110110 \\ \hline 10.0000101 \end{array} \rightarrow \begin{array}{l} \text{Normalization} \\ (1) \text{ shift right} \\ >> 1 \\ (2) \text{ Increment} \\ \text{the exponent} \\ E = E + 1 \end{array} \rightarrow 1.00000101$$

Floating-Point Addition/Subtraction

Normalization, Contd.

- Various situations may occur
 - Scenario 3: When **subtracting**, the result might have **leading zeros**
 - Steps to perform normalization:
 - Shift left the result by as many positions as there are leading zeros
 - Decrement the exponent by the number of leading zeros
 - Example:

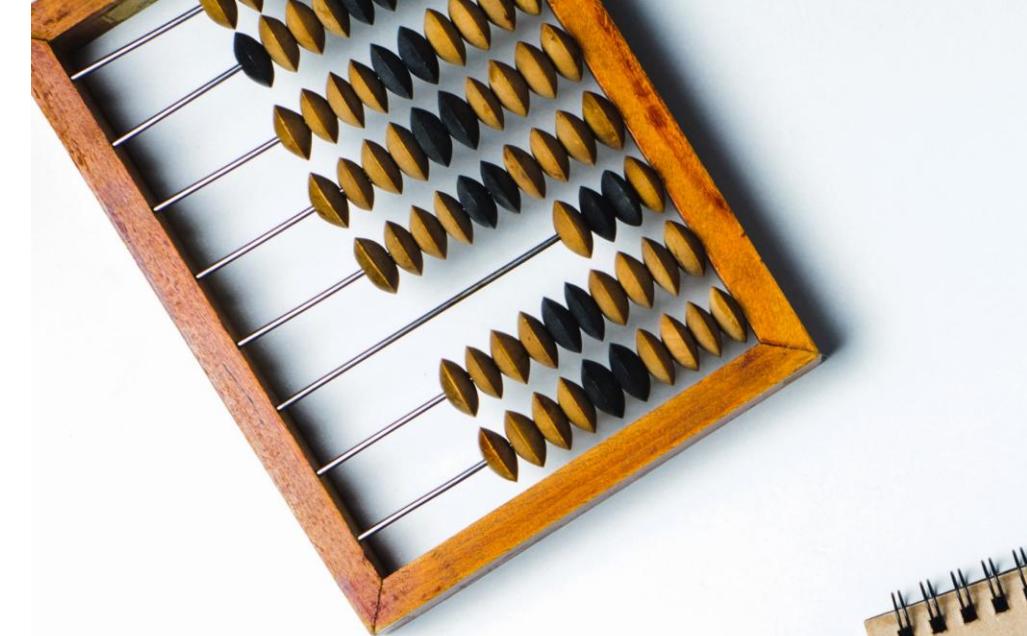
$$\begin{array}{r} 1.1001111 \\ - 1.1001010 \\ \hline 0.0000101 \end{array} \longrightarrow$$

Normalization
(1) count leading zeros
 $p = 5$
(1) shift left
 $\ll p$
(2) Decrement
the exponent
 $E = E - p$

$$\longrightarrow 1.0100000$$

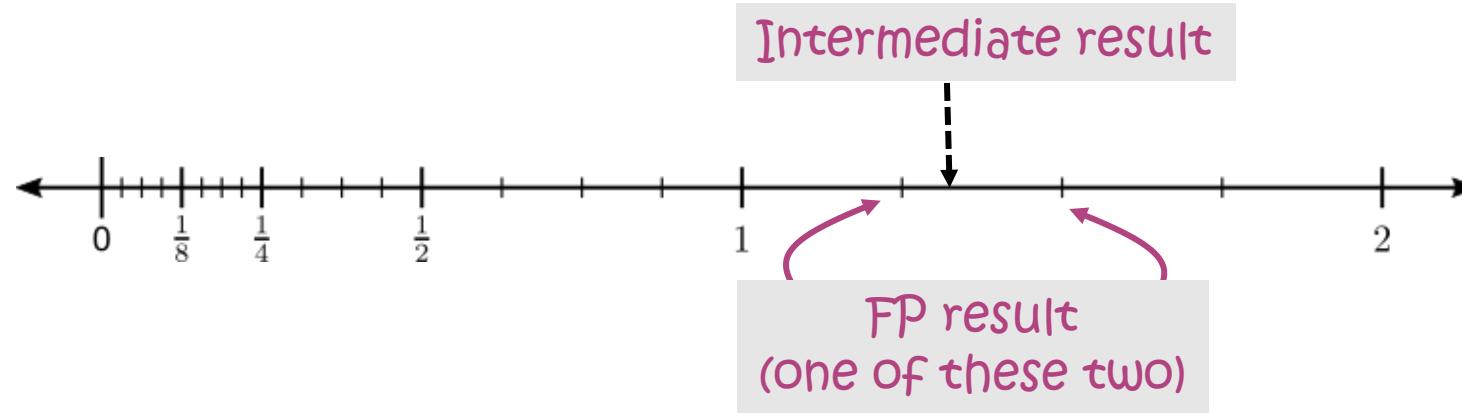
Floating-Point +/-

Step 3: Rounding



Floating-Point Addition/Subtraction

Rounding



- The result may not be representable in the given number format
- Perform rounding
 - Towards zero: truncate the least-significant bits
 - Towards $\pm\infty$: requires addition
 - **[default]** To nearest, to even when tie: requires addition

Rounding to Nearest

To Even if Tie

- The FP result is as close as possible to the exact value
 - Minimized roundoff error (**default** rounding mode in IEEE 754)
 - **Tie to even** is preferred because it leads to smaller errors when the result is divided by two—a frequent operation
- Assuming a significand of infinite precision and radix r ,
round to the nearest can be obtained by **adding** $(r^{-f})/2$ to the infinite precision significand and keeping the resulting f fractional digits
 - If overflow: normalization and the exponent adjustments are needed

Rounding to Nearest

To Even if Tie

- Round the given value to the nearest 8-bit fraction:

$$\begin{array}{r} 1.100100011101 \\ + \quad \quad \quad 1 \\ \hline \end{array}$$

1.10010010
Keep 8 bits

Exact value, but not representable

Addition with $(2^{-8})/2 = 2^{-9}$

Result, after rounding

$$\begin{array}{r} 1.100100001101 \\ + \quad \quad \quad 1 \\ \hline \end{array}$$

1.10010001
Keep 8 bits

Exact value, but not representable

Addition with $(2^{-8})/2 = 2^{-9}$

Result, after rounding

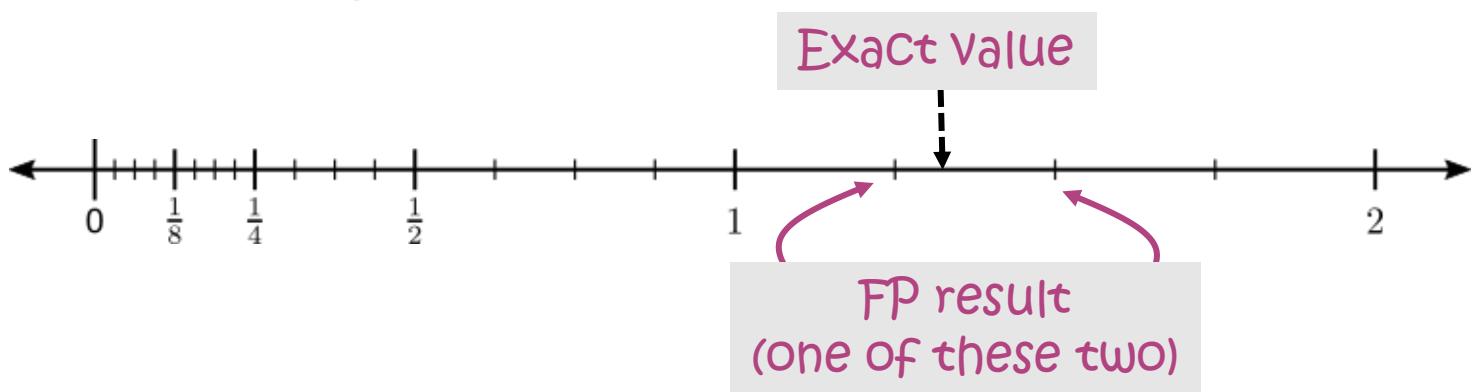
Rounding to Nearest

To Even if Tie

- **Q:** Round the value 1.100100001 to the nearest 8-bit fraction
- **A:** 1.10010000
 - Looking at 1.100100001, notice
 - It's a tie
 - If we ignore the tie bits, what is left is an even number
 - If we were to add anything, we'd end up rounding to the nearest odd number
 - Therefore, in this example, it suffices to truncate the "tie" bits

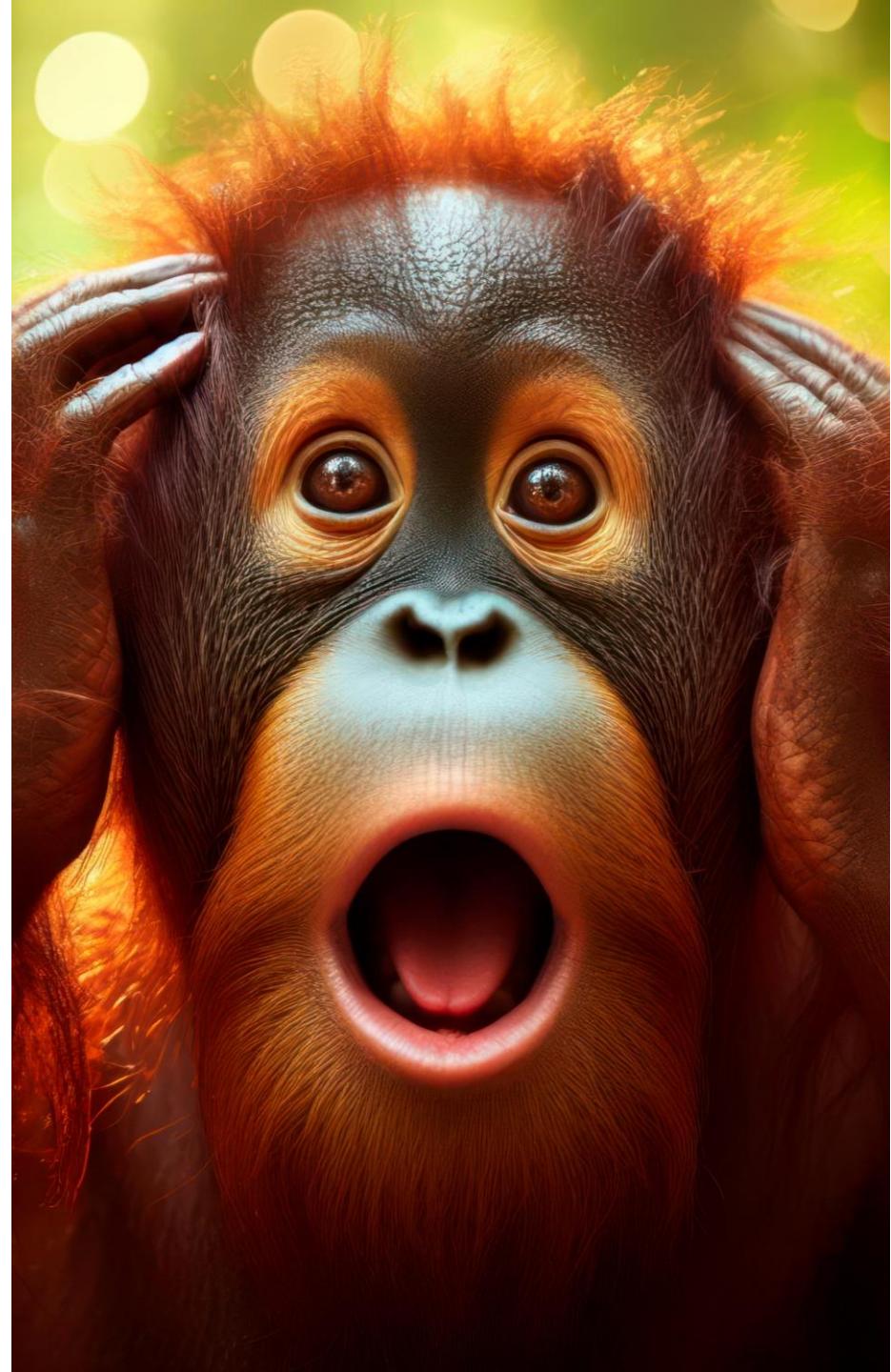
Max Round-off Error

- **Q:** Rounding to nearest, f fractional digits. What is the **maximum** difference between the exact value and its FP representation?



- **A:**
 - When the exact value is in the middle and the exponent is the max

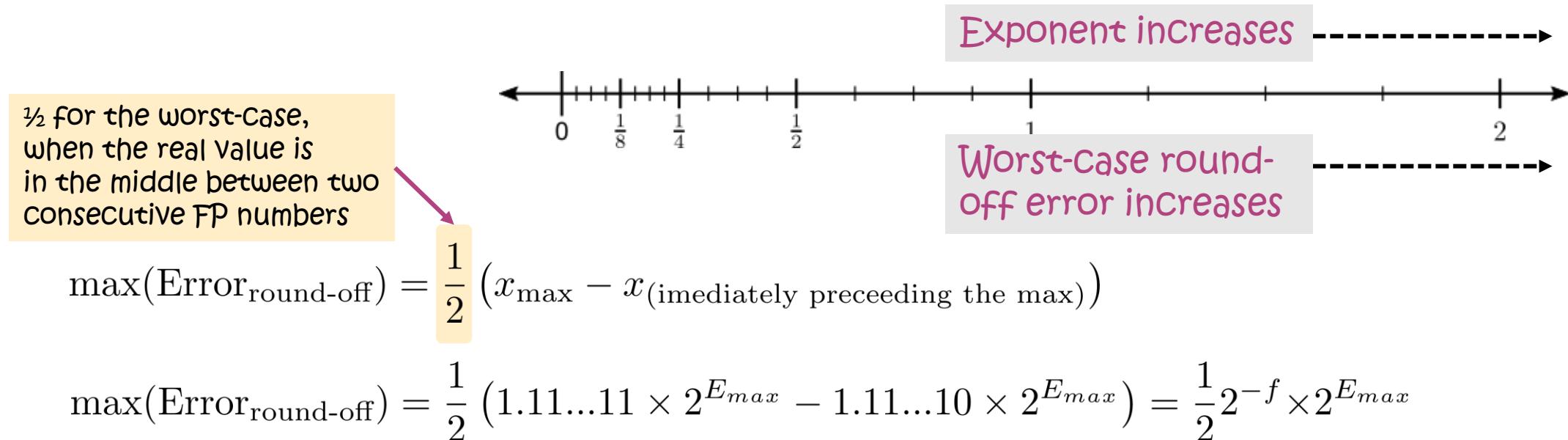
$$\frac{2^{-f}}{2} \times 2^{E_{\max}}$$



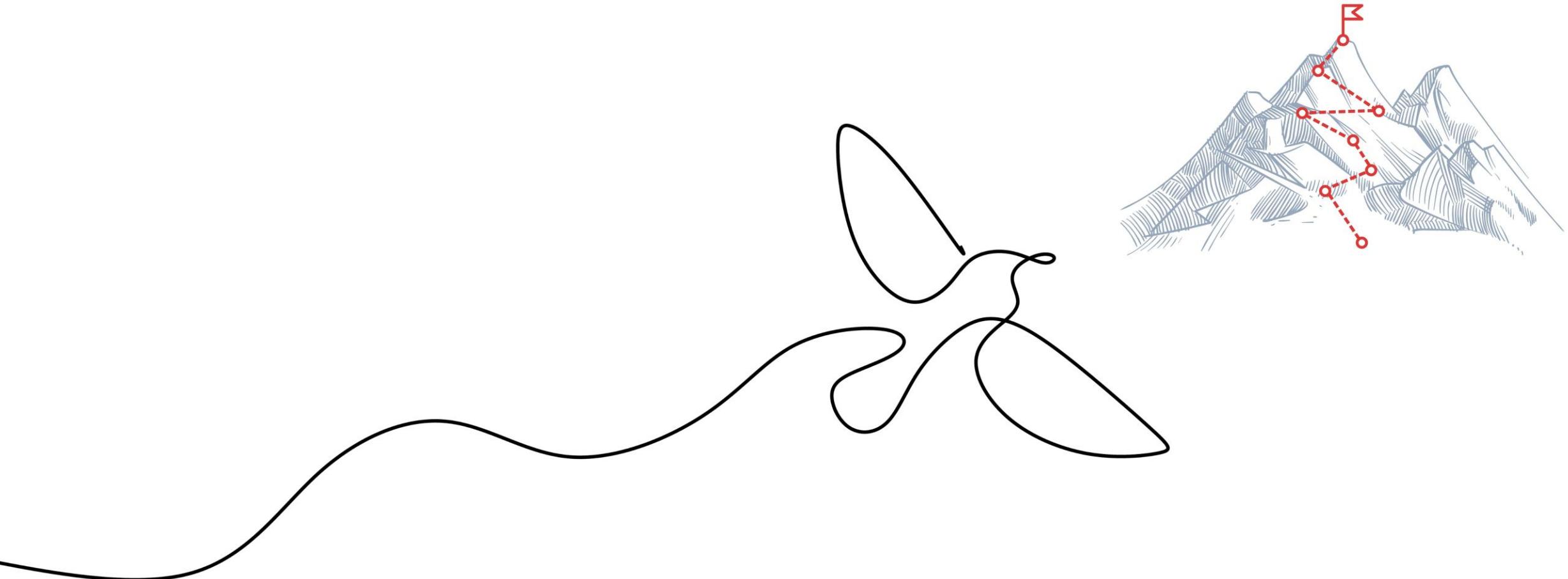
Max Round-off Error

Example Floating-Point

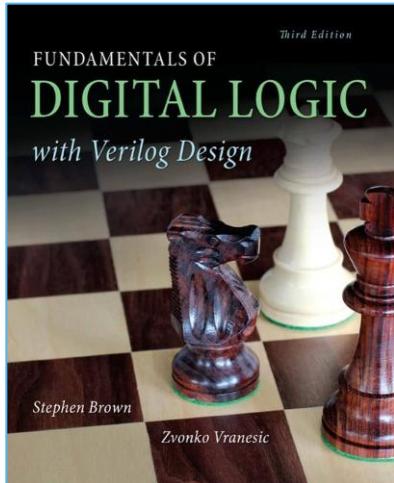
- Rounding to nearest, f fractional digits. Find the worst-case round-off error
- A: Max round-off error occurs for the largest positive exponent



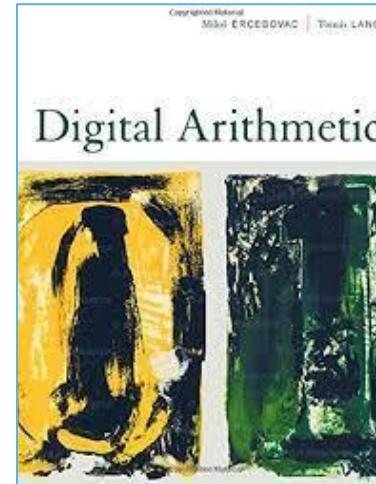
! Computing with large FP numbers may lead to (very) unexpected results



Literature



- Chapter 3: Number Representation and Arithmetic Circuits
 - 3.7.1
 - 3.7.2
- On the web: Wiki, IEEE 754 [[link](#)]



- Chapter 1: Preview of Basic Number Representations and Arithmetic Algorithms
 - 1.2.5
- Chapter 8: Floating-Point Representation, Algorithms, and Implementations
 - 8.1–8.3
 - 8.4.1
 - 8.5.1