
Number Systems
Arithmetic Operations with Fractional Numbers

CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

Spring 2025

https://mirjanastojilovic.github.io/cs173/index.html

Previously on FDS
…Fixed- and Floating-Point Representations

2CS-173, © EPFL, Spring 2025

3

Previously

CS-173, © EPFL, Spring 2025

▪Discovered the notion of radix point

▪ Learned two representations
for fractional numbers
• Fixed-point

• Floating-point
• IEEE 754 standard

▪ Evaluated and analyzed precision,
resolution, range, accuracy,
dynamic range, rounding

Fixed- and Floating-Point Representations

▪ Fixed-point

▪ Value (two’s complement)

▪ Floating-point

▪ Value (sign-and-magnitude mantissa)

4CS-173, © EPFL, Spring 2025

Radix
point

Integer
component

Fractional
component

… … …… … …… …

ExponentSign Magnitude

Constant, “fixed” binary point Variable, “floating” binary point

5CS-173, © EPFL, Spring 2025

Let’s Talk About…
…Performing arithmetic operations
with fractional numbers

6CS-173, © EPFL, Spring 2025

7

Learning Outcomes

▪ Perform +/-/× pen-and-paper style
• Fixed-point

• Floating-point

CS-173, © EPFL, Spring 2025

Quick Outline

▪ Fixed-point arithmetic

▪ Floating-point arithmetic

8CS-173, © EPFL, Spring 2025
© alekseyliss / Adobe Stock

Fixed-Point Arithmetic

9CS-173, © EPFL, Spring 2025
© alekseyliss / Adobe Stock

10

Fixed-Point Arithmetic
Addition/Subtraction

CS-173, © EPFL, Spring 2025

▪ Performing + or - on two binary
numbers and
is done in the same way as
if the operands were integers
• Overflow can happen

E
X

A
M

P
L

E
S

11

Fixed-Point Arithmetic
Example: Addition/Subtraction

▪Addition

CS-173, © EPFL, Spring 2025

▪ Subtraction

Carry Borrow

The largest integer-part exponent:
Consequently:

Number of bits for
the integer component

Number of bits for
the fractional component

The smallest fractional-part exponent:
Consequently:

12

Fixed-Point Arithmetic
Addition/Subtraction in Two's Complement

▪How many bits to represent the integer and fractional parts?

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

13

Fixed-Point Addition
Example: Analogy With Decimal Numbers

▪How many bits to represent the integer and fractional parts?

CS-173, © EPFL, Spring 2025

The largest integer-part exponent:
Consequently:

The smallest fractional-part exponent:
Consequently:

▪Multiplication on two binary numbers and
• Same algorithm as if the operands were integers

• Binary point location changes; overflow can happen

• How many bits to represent the integer and fractional parts?

▪ In two’s complement:

14

Fixed-Point Arithmetic
Multiplication, Same Operand Format

CS-173, © EPFL, Spring 2025

The largest integer-part exponent:
Consequently:

The smallest fractional-part exponent:
Consequently: 15

Fixed-Point Arithmetic
Multiplication, Generalization

▪Multiplication on two binary numbers and
• How many bits to represent the integer and fractional parts?

▪ In two’s complement:

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

16

Fixed-Point Multiplication
Example: Analogy With Decimal Numbers

▪How many bits to represent the integer and fractional parts?

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

17

Fixed-Point Arithmetic
Example: Multiplication

▪ Format

▪ Example

CS-173, © EPFL, Spring 2025

Multiplicand

Multiplier

First partial product (always zero), sign-extended

1 x multiplicand, sign-extended

Intermediate result, sign-extended

0 x multiplicand, left-shifted by 1 place and sign-extended

Intermediate result, sign-extended

1 x multiplicand, left-shifted by 2 places and sign-extended

Intermediate result, sign-extended

1 x multiplicand, left-shifted by 3 places and sign-extended

Intermediate result, sign-extended

0 x multiplicand, left-shifted by 4 places and sign-extended

Result, integer → convert to fixed-point now

In
te

ge
r

M
ul

ti
pl

ic
at

io
n

E
X

A
M

P
L

E
S

▪ Integer result needs now to be converted to
fixed-point representation
• Assuming we can use as many bits as required to represent the integer

and fractional parts

• Assuming the same format for multiplicand, multiplier, and the result

18

Example Contd.

CS-173, © EPFL, Spring 2025
In practice, the format is fixed,

and erroneous results may happen

19

Pros and Cons of Fixed-Point Representation

Arithmetic operations on integers can be applied to
fixed-point numbers without modifications

Portable: we can reuse the same integer processing digital hardware

Like with integers, arithmetic operations are performed efficiently (fast)

Used in image and signal processing and communication

Complex data and algorithm analysis
Where to put the binary point to achieve good accuracy?

There are other number formats (floating-point) that provide
more extensive dynamic range

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025 20

Floating-Point Arithmetic

21CS-173, © EPFL, Spring 2025
© alekseyliss / Adobe Stock

22

Floating-Point Arithmetic
Addition/Subtraction

CS-173, © EPFL, Spring 2025

▪ Let and be represented as and
• The signed significands are normalized

▪Addition/subtraction result is , also represented as

• The significand of the result is also normalized

23

Floating-Point Addition/Subtraction
Algorithm

▪ Four main steps to compute and produce the result of +/-
• Add/subtract significand (mantissa) and set the exponent

The mantissa of the number with the smaller exponent has to be multiplied by
two to the power of the difference between the exponents (this operation is called alignment)
and then added/subtracted to the mantissa of the other number

• Normalize the result and then, if required, adjust the exponent

• Round the result and then, if required, normalize it and adjust the exponent

• Set flags for special values, if required

CS-173, © EPFL, Spring 2025

1

2

3

4

Floating-Point +/-
Step 1: Align and +/-

24CS-173, © EPFL, Spring 2025
© alekseyliss / Adobe Stock

E
X

A
M

P
L

E
S

25

Alignment
Example: Analogy with Decimal Numbers

▪ Example

• Approach 1: Align the two operands to a common exponent, e.g., zero

• Cons: as the exponents of the operands are different from zero,
both significands need adjusting/shifting (unnecessary additional work)

• The result needs to be normalized, and the exponent adjusted
CS-173, © EPFL, Spring 2025

Shifted left (<< 5)

Shifted left (<< 3)

Normalized, 3-bit fraction

Not normalized

E
X

A
M

P
L

E
S

26

Alignment
Analogy with Decimal Numbers, Contd.

▪ Example
• Approach 2: align to the common exponent—min of the two

• Pros: Only one alignment (one adjustment of the significand)

• The result needs to be normalized, and the exponent adjusted

• Left shift: some of the most significant bits of one of the two significands
are lost in the process; potentially a large error

CS-173, © EPFL, Spring 2025

After left shift (<< |5-3|) Not normalized

E
X

A
M

P
L

E
S

27

Alignment
Analogy with Decimal Numbers, Contd.

▪ Example
• Approach 3: align to the common exponent—max of the two

• Pros: only one alignment (one adjustment of the significand)

• The result needs to be normalized, and the exponent adjusted

• Right shift: Some least-significant bits of one of
the two significands may get lost in the process,
but the potential error is much smaller

CS-173, © EPFL, Spring 2025

After right shift (>> |5-3|) Normalized

28

Floating-Point Addition/Subtraction
Step 1: Recap

▪Recall Step 1: Add/subtract significand and set exponent

▪Algorithm:
• Subtract exponents

• Align significands (mantissas)
• Compare the exponents of the two operands

• Shift right positions the significand
of the operand with the smaller exponent

• Select as the exponent of the result
the larger exponent

• Add/subtract signed significands
and produce the sign of the result

CS-173, © EPFL, Spring 2025

FP
operation

Signs of
the operands

Effective
operation

+ = add

+  subtract

- = subtract

-  add

Floating-Point +/-
Step 2: Normalization

29CS-173, © EPFL, Spring 2025
© alekseyliss / Adobe Stock

E
X

A
M

P
L

E
S

30

Floating-Point Addition/Subtraction
Normalization

▪ Various situations may occur
• Scenario 1:

• The result is already normalized. No action is needed.

• Example:

CS-173, © EPFL, Spring 2025

Normalized

E
X

A
M

P
L

E
S

31

Floating-Point Addition/Subtraction
Normalization, Contd.

▪ Various situations may occur
• Scenario 2: When adding, the significand might overflow

• Steps to perform normalization:
• Shift right the result by one position

• Increment the exponent by one

• Example:

CS-173, © EPFL, Spring 2025

Normalization
(1) shift right

>> 1
(2) Increment
the exponent

E = E + 1

E
X

A
M

P
L

E
S

32

Floating-Point Addition/Subtraction
Normalization, Contd.

▪ Various situations may occur
• Scenario 3: When subtracting, the result might have leading zeros

• Steps to perform normalization:
• Shift left the result by as many positions as there are leading zeros

• Decrement the exponent by the number of leading zeros

• Example:

CS-173, © EPFL, Spring 2025

Normalization
(1) count leading zeros

p = 5
(1) shift left

<< p
(2) Decrement
the exponent

E = E - p

Floating-Point +/-
Step 3: Rounding

33CS-173, © EPFL, Spring 2025
© alekseyliss / Adobe Stock

34

Floating-Point Addition/Subtraction
Rounding

▪ The result may not be representable in the given number format

▪ Perform rounding
• Towards zero: truncate the least-significant bits

• Towards  : requires addition

• [default] To nearest, to even when tie: requires addition

CS-173, © EPFL, Spring 2025

Intermediate result

FP result
(one of these two)

35

Rounding to Nearest
To Even if Tie

▪ The FP result is as close as possible to the exact value
• Minimized roundoff error (default rounding mode in IEEE 754)

• Tie to even is preferred because it leads to smaller errors when
the result is divided by two—a frequent operation

▪Assuming a significand of infinite precision and radix ,
round to the nearest can be obtained by adding to
the infinite precision significand and keeping the resulting

fractional digits
• If overflow: normalization and the exponent adjustments are needed

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

▪Round the given value to the nearest 8-bit fraction:

Keep
8 bits

36

Rounding to Nearest
To Even if Tie

CS-173, © EPFL, Spring 2025

Addition with

Exact value, but not representable

Result, after rounding

Keep
8 bits

Addition with

Exact value, but not representable

Result, after rounding

37

Rounding to Nearest
To Even if Tie

▪Q: Round the value to the nearest 8-bit fraction

▪A:
• Looking at , notice

• It's a tie

• If we ignore the tie bits, what is left is an even number

• If we were to add anything, we'd end up rounding to the nearest odd
number
• Therefore, in this example, it suffices to truncate the "tie" bits

CS-173, © EPFL, Spring 2025

38

Max Round-off Error

▪Q: Rounding to nearest, fractional digits.
What is the maximum difference
between the exact value and its
FP representation?

▪A:
• When the exact value is in the middle

and the exponent is the max
CS-173, © EPFL, Spring 2025

FP result
(one of these two)

Exact value

E
X

A
M

P
L

E
S

39

Max Round-off Error
Example Floating-Point

▪ Rounding to nearest, fractional digits. Find the worst-case round-off error

▪ A: Max round-off error occurs for the largest positive exponent

! Computing with large FP numbers may lead to (very) unexpected results
CS-173, © EPFL, Spring 2025

Exponent increases

Worst-case round-
off error increases

½ for the worst-case,
when the real value is
in the middle between two
consecutive FP numbers

40CS-173, © EPFL, Spring 2025

41

Literature

CS-173, © EPFL, Spring 2025

▪ Chapter 3: Number Representation and
Arithmetic Circuits
▪ 3.7.1
▪ 3.7.2

▪ Chapter 1: Preview of Basic Number
Representations and Arithmetic Algorithms
▪ 1.2.5

▪ Chapter 8: Floating-Point Representation,
Algorithms, and Implementations
▪ 8.1–8.3
▪ 8.4.1
▪ 8.5.1

▪ On the web: Wiki, IEEE 754 [link]

https://en.wikipedia.org/wiki/IEEE_754

